Winter Cover Crop Seeding Rate and Variety Effects during Eight Years of Organic Vegetables: III. Cover Crop Residue Quality and Nitrogen Mineralization

Eric B. Brennan,* Nathan S. Boyd, and Richard F. Smith

ABSTRACT

Winter cover crops (CCs) can improve nutrient-use efficiency in tillage-intensive cropping systems. Shoot residue quality and soil mineral N following incorporation of rye (Secale cereale L.), legume–rye, and mustard CCs was determined in December to February or March during the first 8 yr of the Salinas Organic Cropping Systems trial in Salinas, CA. Legume–rye included Vicia faba L., V. sativa L., V. benghalensis L., Pisum sativum L., and rye; mustard included Sinapis alba L. and Brassica juncea Czern. Cover crops were planted in the fall at standard and three times higher seeding rates (SRs) before vegetables annually. Significant CC × year interactions occurred for C and N concentrations and C/N ratios of CC shoots. In general, C concentrations were higher in rye and legume–rye, N concentrations were higher in mustard and legume–rye, and C/N ratios were higher in rye. During the season, C concentrations and C/N ratios tended to increase, whereas N concentrations decreased. Compared with rye and mustard, legume–rye residue quality changed least during each season. Increasing the SR reduced N concentrations and increased C/N ratios; however, the effect varied with time and by residue. Following CC incorporation, soil mineral N varied between years and CC and was typically highest following legume–rye or mustard and lowest without CC. Rainfall after CC incorporation reduced soil N one year, suggesting that leaching occurred. We conclude that mustard and legume–rye produce higher quality residue that will decompose more rapidly and minimize tillage challenges for subsequent vegetables but may be more prone to post-incorporation N leaching.

Replacing bare winter fallows with cover crops is a best management practice for sustainable agricultural systems because cover crops can add C that is important for the soil food web, improve soil quality, reduce soil erosion and N leaching into groundwater, and may reduce supplemental N fertilizer inputs by recycling leachable N and by adding biologically fixed N from legume cover crops (Ferris et al., 2012; Sainju and Singh, 1997; Shennan, 1992; Tonitto et al., 2006). Farmers can also use winter cover crops to comply with increasing regulations designed to reduce nutrient losses (Hartz, 2006); however, cover crop residue management can be a major obstacle to cover crop adoption in tillage-intensive vegetable systems. Residue management is challenging in such systems because it typically requires flail-mowing, multiple tillage operations to incorporate cover crops into the soil, and adequate decomposition time before planting subsequent cash crops (Van Horn et al., 2011). In California vegetable systems, these challenges are avoided in bare winter fallow fields where preformed beds are maintained weed-free with shallow tillage, herbicides, or flammers. Spring vegetable planting is therefore significantly easier and less expensive in bare winter fallowed fields than in cover cropped fields. Cover crop residue management challenges are complicated further when prolonged spring rainfall delays timely termination of winter cover crops and subsequent vegetable plantings.

To increase the adoption of winter cover crops, growers need regionally specific information on how cover crop biomass quantity and quality change during the winter. This information will help growers select the most appropriate cover crops to rotate with vegetables and make management decisions on termination date, tillage requirements, and length of the residue decomposition period. For example, tillage requirements for residue incorporation and the duration of the decomposition period generally increase as cover crop biomass increases and residue quality declines. Information on the temporal changes in cover crop residue quality throughout the season and over multiple years in California and other high-value crop production regions is lacking.

Crop residue quality is often characterized by C and N concentrations, C/N ratios, lignification, and polyphenol content (Kumar and Goh, 2000; Palm et al., 2001). Residue is generally considered higher quality if it has a lower C/N ratio (Handayanto et al., 1997), which hastens decomposition and is therefore more likely to result in net N mineralization and increase subsequent crop yields. One strategy to improve cover crop residue quality and minimize N immobilization is to use cover crop mixtures of nonlegumes and legumes because the N concentrations of such mixtures are often higher than those of nonlegume monocultures (Creamer et al., 1997; Griffin et al., 2000; Odhiambo and Bomke, 2000). Nonlegume cover crops such as mustards provide another strategy to minimize cover.

Abbreviations: DAI, days after incorporation; DM, dry matter; GDD, growing degree days; SR, seeding rate.
cumulative growing degree days (GDD) during the cover cropping periods of 8 yr in Salinas, CA, from data at Station no. 89 of the California Irrigation Management Organic Cropping Systems trial during 8 yr in Salinas, CA. The SOCS trial is a commercial-scale, long-term, organic systems trial focused on high-value and high-input crops in Salinas, CA. The cover crops evaluated represent the three most common groups of winter cover crops (mustards, cereals, and legume–cereal mixtures) used in high-value production systems in the central coast region of California. This region is a major production area for organic and conventional cool-season vegetables and strawberries (Fragaria ×ananassa Duchesne ex Rozier) for U.S. consumption and export. The current study is the third in a series focused on the cover cropping phase of the SOCS trial that included six treatments that were cover cropped annually at either a typical (1x) or high (3x) seeding rate (SR) during the first 8 yr of the trial. The first two studies focused on cover crop densities and biomass production (Brennan and Boyd, 2012a) and N accumulation (Brennan and Boyd, 2012b).

Our objectives were to: (i) track cover crop shoot residue quality in December, January, and at season end (February–March); and (ii) evaluate N mineralization dynamics during the cover crop decomposition period of the first 2 yr. Specific questions of interest were: (i) Are there differences in residue quality between the nonlegume and legume–rye cover crops during the season? (ii) Does SR affect residue quality? (iii) Does residue quality vary across years and if so, what factors contribute to such variation? (iv) How do the N mineralization patterns differ between the cover crops during the post-incorporation period before vegetable planting?

MATERIALS AND METHODS

Site Description and History

More details on the history of the site and cropping sequence of the ongoing SOCS trial were provided by Brennan and Boyd (2012a). Briefly, the trial is located at the USDA-ARS certified organic research farm in Salinas, CA (36°37′ N, 121°32′ W). This site has been certified organic by the California Certified Organic Farmers since 1999. The site was used for conventional, winter oat (Avena sativa L.) hay production from 1990 to 1996, with frequent fallow periods and occasional organic vegetables and cover crops with minimal inputs from 1999 to 2003. The decomposed granite soil is a Chualar loamy sand (a fine-loamy, mixed, superactive, thermic Typic Argiudoll) with 77% sand, 15% silt, and 8% clay.

Cropping Sequence and Experimental Design

The experimental design is a randomized complete block with eight systems (i.e., treatments) in four replicates. The cover crop residue quality data presented were from six systems that were cover cropped annually for 8 yr and received identical compost, fertilizer, and irrigation inputs during vegetable production. The soil N mineralization dynamics of these six systems and post cover crop incorporation during the first 2 yr were compared with N mineralization of another system that received the same inputs but was fallow during the first two winter periods. The system plots are 12.2 m wide by 19.5 m long and are arranged in a grid of four plots wide by eight plots long within a 0.9-ha field. The annual rotation began with winter cover crops or fallow from October or November to February or March, followed by romaine lettuce (Lactuca sativa L. var. longfolia Lam.) from May to June or July each year, which was followed by baby leaf spinach (Spinacia oleracea L., July–September, Year 1) or broccoli (B. oleracea L. var. italica Plenk., July or August to September or October, Years 2–7). Dates for cover crop planting and previous crop residue incorporation varied slightly by year (Table 1). Supplemental dry and liquid organic fertilizers were applied to the vegetable crops at rates of 22 kg N ha⁻¹ for spinach, 73 kg N ha⁻¹ for lettuce, and 134 to 168 kg N ha⁻¹ for broccoli; additional details on fertilizer inputs were provided by Brennan and Boyd (2012a). The seven systems received 7.6 Mg ha⁻¹ (oven-dry basis) of urban yard-waste compost with an approximate C/N ratio of 22 before each vegetable crop. All systems occurred on the same plots annually to determine their cumulative effects. Local organic farmers and industry stakeholders provided advice on crop management and the personnel, expertise, and equipment needed for the commercial-scale harvest and sale of marketable vegetables from the trial. Thus, although the study occurs on a research station, the land is intensively managed to meet the same production standards and practices of a local organic farm.

Table 1. Cover crop planting, sampling, and termination dates, cumulative growing degree days, and water received in the Salinas Organic Cropping Systems trial during 8 yr in Salinas, CA.

<table>
<thead>
<tr>
<th>Year</th>
<th>Winter period</th>
<th>Planting</th>
<th>Cover crop sampling</th>
<th>Termination</th>
<th>Growing degree days</th>
<th>Precipitation + irrigation</th>
</tr>
</thead>
</table>

† Cumulative growing degree days (GDD) during the cover cropping periods of 8 yr in Salinas, CA, from data at Station no. 89 of the California Irrigation Management System (www.cimis.water.ca.gov); GDD were calculated by the single sine method with a baseline threshold of 4°C using the online calculator at the University of California Statewide Integrated Pest Management Program site (www.ipm.ucdavis.edu).

‡ Irrigation was applied to establish the cover crops.
Field Preparation, Cover Crop Planting, and Management

Field preparation for planting the cover crops included a combination of disk and spring-tooth harrowing, spading, and ring rolling (Till an’ Pak, T.G. Schmeiser Co.) as necessary to incorporate the previous crop’s residue. Deep ripping to approximately 1 m below the surface was also necessary to break up compaction in the furrows caused by heavy, commercial-scale harvest equipment for the lettuce and broccoli. Cover crops were planted in a single pass with a 4.6-m-wide grain drill that was modified with four belt cones. Rhizobium inoculants (Rhizo Stick, Urbana Laboratories; N-DURE, INTEX Microbials) were added to the legume–rye seed before planting. The target planting date for the cover crops was 15 October; however, the actually dates ranged from 15 October to 2 November (Table 1) due to vegetable crop harvest dates and post-harvest tillage requirements. The 1 × SR for each cover crop was the typically recommended rate for vegetable growers in this region. The 1 × SRs were 90 kg ha⁻¹ for rye, 11 kg ha⁻¹ for mustard, 140 kg ha⁻¹ for the legume–rye mixture; the 3 × rates were three times greater. Seed was obtained from the L.A. Hearne Company. The rye cultivar used was Merced. The mustard was a mixture by seed weight of 61% white mustard (Ida Gold, Sinapis alba L.) and 39% India mustard (Pacific Gold, B. juncea Czern.). By seed weight, the legume–rye mixture included 10% rye, 35% faba bean (Vicia faba L., a small-seeded type known as bell bean), 25% Magnus pea (Pisum sativum L.), 15% common vetch (V. sativa L.), and 15% purple vetch (V. benghalensis L.); commercially available mixtures with these legume species and rye or oat are relatively common in the region. Sprinkler irrigation was applied to stimulate germination before the onset of adequate winter rainfall (Table 1). The last irrigation during the cover cropping period typically occurred in mid to late November. Cover crops were terminated by flail mowing and incorporated into the soil with a single pass with a spader. The termination dates for the cover crops were selected to maximize cover crop biomass, prevent cover crop seed production, and allow adequate time for residue decomposition and field preparation for planting the subsequent lettuce crop in May. Sprinkler irrigation (38 mm) was applied during the cover crop decomposition period in Year 1.

The fallow system plots received the same overhead irrigation as was applied to establish the cover crops in the cover cropped systems. Weeds that germinated during the cover cropping period in the fallow system were controlled by a combination of flaming, shallow tillage to an approximate depth of 5 cm with a wheel hoe, and rototilling to an approximate depth of 10 cm as needed; this weed management strategy was similar to that applied to winter-fallowed fields in the region, except weed management is typically applied on peaked beds rather than on unbedded fields. The fallow system received the same spading tillage as the cover cropped systems when the cover crops were incorporated in the spring.

Cover Crop and Soil Sampling and Analysis

The shoot biomass of the cover crops was sampled by harvesting one 50- by 100-cm quadrate oriented to cover three adjacent rows for each plot at three (Year 1–3) or two (Year 4–8) sampling dates during each winter (Table 1). The harvested cover crop biomass of the legume–rye mixture was separated into the legume and rye components, and the cover crop biomass was oven-dried at 65°C for at least 48 h until the weight had stabilized to obtain shoot dry matter (DM). The cover crop biomass sampling dates were chosen to track changes in cover crop DM during the winter and to minimize sampling on rainy days. Cover crop DM samples were ground to pass through a 0.250-mm screen, and a 10-mg subsample was analyzed by a combustion gas analyzer method (AOAC, 2006) for total C and N at the University of California-Davis Analytical Laboratory (http://anlab.ucdavis.edu/analyses/plant/sop522) using a TruSpec CN analyzer (LECO Corp.). The reported concentrations of C and N from these analyses were on a 100% DM basis from drying samples to 105°C. Nitrogen analyses were conducted for all harvests. Carbon analysis was conducted for all years except for Year 1, when it was only done for the final harvest. The legume and rye components of the legume–rye mixture were analyzed separately.

A composite of 20 soil samples was taken with a 1.9-cm-diameter sampler to a depth of 30 cm approximately every 7 to 10 d after incorporation (DAI) of cover crop residues into the soil during the approximately 6-wk cover crop decomposition period. Soil samples from each plot were bulked and thoroughly mixed in the field. Soil was passed through a 2.8-mm sieve and a subsample was weighed and then oven-dried at 105°C until stable for determination of the gravimetric soil moisture content. A 10-g subsample of the soil was extracted in the field with 25 mL of 2.0 mol L⁻¹ KCl to measure extractable NO₃⁻N and NH₄⁻N using the flow injection method (Hofer, 2003; Knapel, 2003) at the University of California-Davis Analytical Laboratory (http://anlab.ucdavis.edu/analyses/soil/312). Statistical Analysis

All data were analyzed using SAS version 9.2 (SAS Institute). The 95% confidence intervals (CIs) of shoot cover crop N concentration, C concentration, and C/N ratios were calculated using the CLM option in the MEANS procedure. The CIs are provided to assist with means comparisons using the “rule of eye” method suggested by Cumming (2009), whereby intervals that overlap with a mean are not different, intervals that overlap by half of one interval arm are significantly different at p ≈ 0.05, and intervals that barely touch are significant at p ≈ 0.01. Analyses of the response variables were conducted using the MIXED procedure as a repeated measures model (Littell et al., 1996), with year as the repeated effect, an autoregressive AR(1) covariance structure, and cover crop × SR × block as the SUBJECT option; separate analyses were conducted for each harvest period. In the ANOVA, cover crop, year, and SR were treated as fixed effects and block and cover crop × SR × block were treated as random effects. The repeated measures approach was also used for the analysis of the rye in monoculture vs. rye in the legume–rye mixture, where year and SR were treated as fixed effects and block and SR × block were treated as random effects. A similar approach was also used to compare legume N concentration between SR, with SR as the fixed effect. Where necessary, the data were transformed to meet the equal-variance assumption of ANOVA, but back-transformed means are presented. Transformations were: 1/x for December and January analyses of the C/N ratio for rye in monoculture and legume–rye; 1/√x values that overlap with a mean are not different, intervals that overlap by half of one interval arm are significantly different at p ≈ 0.05, and intervals that barely touch are significant at p ≈ 0.01. Analyses of the response variables were conducted using the MIXED procedure as a repeated measures model (Littell et al., 1996), with year as the repeated effect, an autoregressive AR(1) covariance structure, and cover crop × SR × block as the SUBJECT option; separate analyses were conducted for each harvest period. In the ANOVA, cover crop, year, and SR were treated as fixed effects and block and cover crop × SR × block were treated as random effects. The repeated measures approach was also used for the analysis of the rye in monoculture vs. rye in the legume–rye mixture, where year and SR were treated as fixed effects and block and SR × block were treated as random effects. A similar approach was also used to compare legume N concentration between SR, with SR as the fixed effect. Where necessary, the data were transformed to meet the equal-variance assumption of ANOVA, but back-transformed means are presented. Transformations were: 1/x for December and January analyses of the C/N ratio for rye in monoculture and legume–rye; 1/√x
RESULTS AND DISCUSSION

Cover Cropping Period Weather

A detailed description of weather differences during the cover cropping periods was presented by Brennan and Boyd (2012a). Briefly, the average daily air temperatures during cover cropping typically ranged from 5 to 15°C, and rainfall was from 96 to 305 mm (Table 1). Years 4 and 5 were drier than normal and received <50% of the typical rainfall of 313 mm between October and March from 1994 to 2011. Differences among years in planting date and subsequent air temperatures caused differences in accumulated growing degree days (GDD) that ranged from 815 to 1121. These weather differences among years affected cover crop shoot DM production (Brennan and Boyd, 2012a), N accumulation (Brennan and Boyd, 2012b), and residue quality (discussed below).

Cover Crop Shoot Carbon Concentrations

Carbon concentrations of cover crop shoots differed by cover crop and year, with significant cover crop × year interactions at all harvests; C concentrations were unaffected by SR (Table 2). These cover crop × year interactions are illustrated for each harvest in Fig. 1. Within years, points are offset to differentiate confidence intervals. Within years and harvests, means with different lowercase letters are significantly different based on a Tukey-Kramer adjusted familywise error rate at p ≤ 0.05. The numbers in parentheses following the legend for each cover crop are the mean C concentrations averaged across years and rates; within each harvest, numbers in parentheses adjacent to different uppercase letters are significantly different based on a Tukey-Kramer adjusted familywise error rate at p ≤ 0.05. Carbon concentrations of rye and legume–rye were consistently higher than that of mustard across all years and harvests. The differences in C concentrations of mustard vs. the other cover crops diminished from 45 g C kg⁻¹ DM in December to 21 g C kg⁻¹ DM at season end. There was also a trend of increasing C concentrations through the season within a cover crop and year; this pattern was most consistent for mustard. The increased lignification that occurs in plant shoots with

<table>
<thead>
<tr>
<th>Effect</th>
<th>C concentration</th>
<th>N concentration</th>
<th>C/N ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover crop (CC)†</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Seeding rate (SR)‡</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>Year (Yr)</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>CC × SR</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>CC × Yr</td>
<td>*</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>SR × Yr</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>CC × SR × Yr</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
</tbody>
</table>

* Significant at the p ≤ 0.05 level; ns, not significant.

† Cover crops included rye, a legume–rye mixture, and mustard.
‡ Seeding rates were 90 and 270 kg ha⁻¹ for rye, 140 and 420 kg ha⁻¹ for legume–rye, and 11 and 33 kg ha⁻¹ for mustard.

* Signiﬁcant at the p ≤ 0.001 level.

† Cover crops included rye, a legume–rye mixture, and mustard.
‡ Seeding rates were 90 and 270 kg ha⁻¹ for rye, 140 and 420 kg ha⁻¹ for legume–rye, and 11 and 33 kg ha⁻¹ for mustard.

for total C/N ratio analysis at January and season end; and natural logarithm for C/N analyses of rye in monoculture vs. legume–rye mixture. Pairwise comparisons were controlled at the familywise error rate of p ≤ 0.05 using Bonferroni or Tukey–Kramer adjustments.
increased age (Kilcher and Troelsen, 1973; Rencoret et al., 2011) may explain why the C concentrations tended to increase in the cover crop shoots during the season.

Crop residues typically contain 400 to 500 g C kg\(^{-1}\) DM (Kumar and Goh, 2000), and while cover crop studies often report C/N ratios of the residue, relatively few have reported C concentrations. Season-end C concentrations for rye in our study (442 g kg\(^{-1}\)) were similar to those in previous studies for rye leaves and stems (455–456 g kg\(^{-1}\)) (Quemada and Cabrera, 1995) but higher than for rye shoots (395 g kg\(^{-1}\)) (Sainju et al., 2005a). Carbon concentrations of mustard (\textit{S. alba}) mature leaves (355 g kg\(^{-1}\)) and stems (398 g kg\(^{-1}\)) (Chaves et al., 2004) were comparable to mustard in our study in January (391 g kg\(^{-1}\)); \textit{S. alba} produced most of the mustard biomass in our study. To our knowledge, our study presents the first detailed information on the dynamics of cover crop C concentrations across the seasons of multiple years.

There was a significant, positive, linear relationship (\(r^2 = 0.56, p \leq 0.05\)) between the amount of water (irrigation + rainfall) that the cover crops received by the January harvests and the C concentration of mustard but not of rye or legume–rye (Fig. 2). This finding agrees with those of Stubbs et al. (2009), who found higher C concentrations of spring barley (\textit{Hordeum vulgare} L.) during a wet than a dry year, and work by Alam et al. (2011), who found higher C concentrations in \textit{Brassica napus} L. that was irrigated than that which was drought stressed. The significant correlation between water received and C concentrations in mustard in our study suggests that, compared with the other cover crops, mustard was more sensitive to dry conditions.

Cover Crop Shoot Nitrogen Concentrations

Shoot N concentrations were affected significantly by cover crop, year, and their interaction at all harvests and by SR in December and January (Table 2). The cover crop \(\times\) year interaction occurred because of differences in the relative ranking of N concentrations among cover crops during some years (Fig. 3). For example, during January of Year 1, mustard and the legume–rye mixture had the same N concentration (35 g kg\(^{-1}\)), whereas during Year 5 mustard had a higher concentration (36 g kg\(^{-1}\)) than the legume–rye mixture (29 g kg\(^{-1}\)) (Fig. 3B). Averaged across SR and years, the N concentrations were higher in legume–rye and mustard than in rye throughout the season; however, these differences among cover crops declined...
through the season as N concentrations also declined (Fig. 3). The percentage decline in the N concentrations from December to season end was 58% for rye (from 38 to 16 g kg⁻¹), 55% for mustard (from 47 to 21 g kg⁻¹), and 54% for legume–rye (from 48 to 22 g kg⁻¹). The relatively low N concentrations (16 g kg⁻¹) of the rye monoculture at season end in our study are comparable to the range (14–18 g kg⁻¹) from a previous study in the central coast region of California (Brennan et al., 2011). Muramoto et al. (2011) reported 21 g N kg⁻¹ at season end in a legume–oat cover crop from an organic farm in Santa Cruz, CA, a concentration that was nearly identical to the N concentration of rye in our study. In other regions of the United States, N concentrations at season end for mustard (from 47 to 21 g kg⁻¹), and 54% for legume–rye, and 36 vs. 35 g kg⁻¹ for mustard. The negative effect of the increased SR on N concentrations up to January was presumably because higher seeding rates increased DM production (Brennan and Boyd, 2012a) and the demand for N.

Nitrogen concentrations of rye in the monoculture and legume–rye mixture were affected significantly by cover crop at all harvests, SR in December and January, and year during January and February–March; however, a cover crop × year interaction also occurred during the latter two harvests (Table 3). The cover crop × year interaction for the N concentration and C/N ratio of rye in both monoculture and mixture followed the same pattern and therefore are discussed below for the C/N ratio. The SR effect on the rye N concentration in the monoculture and mixture was evaluated with regression analysis across four rye densities and revealed high negative correlation between rye density and rye N concentration in December ($r^2 = 0.96$) and January ($r^2 = 0.98$) (Fig. 5). Increased competition for soil N at higher rye densities was the probable cause of the lower rye N concentrations at higher densities.

Nitrogen concentrations of the legume component of the legume–rye mixture were significantly affected by cover crop at all harvests, SR in December and January, and year during January and February–March; however, a cover crop × year interaction also occurred during the latter two harvests (Table 3). The cover crop × year interaction for the N concentration and C/N ratio of legume in both monoculture and mixture followed the same pattern and therefore are discussed below for the C/N ratio. The SR effect on the legume N concentration in the monoculture and mixture was evaluated with regression analysis across four legume densities and revealed high negative correlation between legume density and legume N concentration in December ($r^2 = 0.96$) and January ($r^2 = 0.98$) (Fig. 5). Increased competition for soil N at higher legume densities was the probable cause of the lower legume N concentrations at higher densities.

Nitrogen concentrations of the legume component of the legume–rye mixture were significantly affected by SR and SR × year interaction during December (Table 4). The SR × year interaction for the legume component occurred in December because increasing the SR increased the legume N concentration during Year 1 (from 42 to 46 g kg⁻¹) and Year 2 (from 43 to 47 g kg⁻¹) but decreased it during Year 3 (from 47 to 44 g kg⁻¹). The SR did not affect the legume N concentration during January or at season end. We speculate that greater cover crop density in the 3 × SR reduced the soil N concentrations, which in turn may have increased N₂ fixation and N concentrations in the legume component during Years 1 and 2; it is unclear if the reduction in legume N concentration with increasing SR during Year 3 was due to the lower overall density of legumes and greater legume DM that year or climatic effects.
Agronomy Journal • Volume 105, Issue 1 • 2013 177

or other differences among years (Brennan and Boyd, 2012a). Legumes are known to derive more N from fixation when soil N concentrations are reduced by strategies such as intercropping legumes with cereals (Peoples et al., 2009).

Shoot Carbon/Nitrogen Ratios of Cover Crop Residue

The total shoot C/N ratios varied significantly by cover crop across all harvests, and significant year and cover crop × year effects occurred in January and year end (Table 2). Relatively small differences in the ranking of the C/N ratios within a year explain the cover crop × year interactions (Fig. 6B–6C). For example, during January there were seldom differences in the C/N ratios of mustard and the legume–rye mixture, except during Year 5 when all cover crops differed and Year 8 when there were no differences (Fig. 6B). The C/N ratios increased through the season in all cover crops, and averaged across SR and years, the C/N ratios were greater in rye than in legume–rye and mustard (Fig. 7); the means in Fig. 7 are slightly different from those in Fig. 6, where back-transformed means are presented for January and February–March. The lower C/N ratio of the legume–rye mixture compared with rye agrees with previous studies from this region (Brennan et al., 2011) and elsewhere (Rosecrance et al., 2000; Teasdale and Abdul-Baki, 1998).

Seeding rate had a significant effect on the C/N ratio of the total cover crop shoots during January (Table 2). Averaged across years, the C/N ratio of shoots increased from the 1x to 3x SR by 4% in legume–rye (from 11.3 to 11.8) and mustard (from 10.9 to 11.3), and 14% in rye (from 15.6 to 17.8). To our knowledge, this is the first report that the SR can influence C/N ratios.

The C/N ratio of rye in the monoculture and rye in the legume–rye mixture differed significantly between these
cover crops at all harvests, and there were significant year and year × cover crop effects at January and season end (Table 3). The cover crop × SR × year interaction for rye C/N ratios in December occurred because the ratio increased from Years 2 to 3 in the monoculture and legume–rye 3× SR but declined in legume–rye 1× SR (data not shown). The C/N ratio of monoculture rye was greater than rye in the legume–rye mixture during all years in January and during 6 of 8 yr at season end (Fig. 8); the C/N ratio of rye in monoculture in January was slightly less in Fig. 8 than in Fig. 6 and 7 because a different transformation was needed to homogenize the variance for the data shown in Fig. 6 and 7. We speculate that the low rainfall relative to the high number of GDD may have contributed to the particularly high C/N ratios of rye in the monoculture (41) and rye in the legume–rye mixture (29) during Year 4 (Fig. 8b). For example, the ratio of accumulated GDD to water received from rainfall and irrigation was 6.7 (946 GDD/142 mm) during Year 4 when the C/N ratios were highest compared with 3.8 (959 GDD/253 mm) during Year 8 when the C/N ratios were lowest in the monoculture rye.

Seeding rate had a significant effect on the C/N ratios of rye in monoculture and rye in the legume–rye mixture during December and January (Table 3). Averaged across years, increasing the SR from 1× to 3× increased the C/N ratio of rye in the legume–rye mixture from 8 to 9 during December and from 11 to 12 January.

The C/N ratio of the legume component of the legume–rye mixture was affected significantly by the SR × year interaction (December), year (January and season end), and SR (season end) (Table 4). The SR × year interaction occurred because from Years 2 to 3 the C/N ratio of the legume component declined from 10 to 9 for the 1× SR but increased from 9 to 10 for the 3× SR. Averaged across years, increasing the SR from 1× to 3× increased the C/N ratio of the legume shoot residue significantly from 13 to 14 (Table 4). Figure 9 illustrates the increase in the C/N ratio of the legume component from 9.6 to 14.3 during the season and the effect of year through the season.

The relationship between cover crop shoot C/N ratios and N concentrations followed the same pattern reported by Vigil and Kissel (1991) (Fig. 10). The relatively narrow spread of the data for the legume–rye plot compared with that of the rye plot illustrates greater seasonal changes in the quality of the rye vs. legume–rye residue. Whereas the changes in residue quality of the mustard cover crop was intermediate to that of rye and legume–rye.
Figure 10 also illustrates that the C/N ratio of the cover crop residue can be estimated readily from the residue N concentration, and this can save researchers the extra cost of C analyses.

Cover Crop Decomposition Period Weather

There were differences in soil temperature and rainfall patterns during the cover crop decomposition periods of Years 1 and 2 (Fig. 11A). Soil temperatures were several degrees cooler in the first week after cover crop incorporation during Year 1 than Year 2. Furthermore, during the decomposition period, Year 1 had only a single rain event (8 mm at 17 DAI) compared with the more frequent rainfall during Year 2, including 35 mm on 11 DAI and 102 mm total. These differences between years help explain the differences in soil mineral N during the cover crop decomposition period (discussed below). Due to the dry conditions during Year 2, 38 mm of supplemental irrigation was applied to promote cover crop decomposition.

Soil Nitrogen Mineralization

Soil N mineralization patterns differed markedly between Years 1 and 2 and between fallow and cover cropped systems within a year (Fig. 11B–11C). Averaged across systems, mineral N levels were 4 mg N kg⁻¹ dry soil within the first 2 DAI both years, and the overlap of the 95% confidence intervals indicates similar N levels among systems; however, the highest N followed the legume–rye both years. During Year 1, soil mineral N increased more rapidly in the cover cropped systems than the fallow system through the first 20 DAI; however, there were no apparent differences among systems by the latter sampling dates (23 and 36 DAI) when mineral N peaked at approximately 20 to 25 mg kg⁻¹ dry soil. Application of soil amendments and bed shaping between the last two sampling dates of Year 1 had no apparent effect on soil mineral N levels. Averaged across systems during Year 2, there was a trend of increasing soil mineral N up to 10 DAI, followed by an overall decline that probably was due to N leaching below the 30-cm sampling depth following the 35 mm of rainfall on 11 DAI that nearly doubled the gravimetric soil water content (data not shown). There were clear patterns of higher soil mineral N following the legume–rye cover crop up to 17 DAI during Year 2 and higher N from 24 to 44 DAI following the legume–rye and mustard cover crops. By the last sampling date of Year 2, mineral N was <10 mg kg⁻¹ dry soil in the fallow and rye systems compared with an average of 14 mg kg⁻¹ dry soil following legume–rye and mustard cover crops.

Practical Implications of Residue Quality and Nitrogen Mineralization Dynamics for Vegetable Production Systems

Integrating the cover crop DM production and N accumulation results from the companion studies (Brennan and Boyd, 2012a, 2012b) with the residue quality and soil mineral N results for Years 1 and 2 in the present study provides important insights into the complex dynamics and practical implications of cover cropping in tillage-intensive systems. For example, similarities in the soil mineral N within the cover cropped systems during Year 1 were probably because
there were no differences in the cover crop DM production (7.3–8.8 Mg ha⁻¹; Brennan and Boyd, 2012a), shoot N accumulation (141–175 kg ha⁻¹; Brennan and Boyd, 2012b), or C/N ratios (23–24; Fig. 6C) at the time of cover crop incorporation. In contrast, at 10 and 17 DAI during Year 2, the higher soil N levels following the legume–rye cover crop compared with the other cover crops was probably because shoot N accumulation was considerably higher for legume–rye (146 kg ha⁻¹) than rye (81 kg ha⁻¹) or mustard (75 kg ha⁻¹) (Brennan and Boyd, 2012b), and C/N ratios were also lower for legume–rye than rye or mustard (Fig. 6C). We speculate that during Year 2, the lower C/N ratio of legume–rye (20) than mustard (26) increased the residue decomposition rate and N leaching of the soil amended with legume–rye vs. mustard residue and may explain why legume–rye and mustard systems had similar soil mineral N levels from 24 to 44 DAI (Fig. 11C); this similarity is remarkable considering that the mustard shoots contained nearly half as much N as the legume–rye shoots during Year 2 (Brennan and Boyd, 2012b). The low levels of soil mineral N in the rye systems during Year 2 were probably caused by the high C/N ratio of the rye residue (31). It is important to note that while rye and mustard shoots accumulated equivalent amounts of N by season end during Year 2 (mustard, 75 kg ha⁻¹; rye, 81 kg ha⁻¹; Brennan and Boyd, 2012b, Fig. 3C), the mineralization rate was greater for mustard than rye from 17 to 44 DAI (Fig. 11C). This suggests that the potential for N leaching was greater for mustard than rye residue after incorporation.

Comparing the soil mineral N levels in the fallow vs. cover cropped systems illustrates the practical challenge of predicting how cover crops will affect soil N levels after incorporation. For
more (US$680 ha⁻¹) than the seed costs for a nonlegume cover crop (Brennan, unpublished data, 2003–2012) were nearly 10 times the seed costs of using a nonlegume such as rye that the higher quality residue such as rye. Cover crop seed in the region typically accounts for only 20 to 30% of the total cover cropping costs (i.e., labor to plant, irrigate, and terminate, fuel, etc.) in high-value vegetable production systems in California (Klonsky and Tourte, 2011; Tourte et al., 2004, p. 18).

This study provides valuable information on residue quality changes of three cover crops during the winter cover cropping period of 8 yr and N mineralization dynamics during the first 2 yr of a high-value organic systems trial. As the season progressed, there were trends toward increasing C concentrations and C/N ratios and decreasing N concentrations of the cover crop residue. The study provides novel information on the effects of SR on residue quality whereby the C/N ratios of rye in the monoculture and mixture increased with SR, and there was high negative correlation between early-season rye density and N concentration up to January. In contrast, increasing SR in the legume–rye mixtures increased the N concentration of the legume component during December of most years, presumably because the higher SR reduced soil N and increased N₂ fixation. It is unlikely, however, that the relatively small but statistically significant effect of cover crop SR on residue quality would be of practical significance. We conclude that mustard and the legume–rye mixture had higher residue quality than monoculture rye throughout the season. Furthermore the legume component in the legume–rye mixture improved the residue quality of the rye component. These differences suggest that shoot residue from the rye monoculture has the greatest potential to immobilize N when incorporated at season end and may require a longer decomposition period than the residue of mustard and legume–rye before subsequent vegetable planting. Soil mineral N following cover crop incorporation varied considerably between years and appeared to be influenced by spring weather patterns as much as by winter soil management. Additional research is needed to develop management strategies to help growers maximize the benefits of nutrient cycling from incorporated cover crop residue into subsequent crops and reducing the risk of N leaching for cover crops such as legume–cereal mixtures that may contain large amounts of N in their biomass and nonlegumes such as mustard with a relatively low C/N ratio. Nitrogen leaching may be particularly important when shallow-rooted vegetables such as lettuce (Jackson, 1995) follow winter cover crops.

ACKNOWLEDGMENTS

The authors thank (1) Patrick Headley, Cristal Cisneros, Joel Thomas, Adriana Marquez, Jared Burchard, and Jose Rico for laboratory and field assistance; (2) Geraldo Ochoa, David Lara, and Jim Leap for assistance with planting the cover crops; (3) David Lara, Jose Orozco, and Jim Leap for assistance with harvesting and incorporating cover crops; and (4) Bruce Makey for statistical assistance. The first 2.5 yr of this study was partially funded by a grant from the University of California Specialty Crops Research Program. We appreciate the input on the design of the trial from Michael Cahn, Steve Fennimore, Hoard Ferris, and Laura Tourte.

REFERENCES

More (US$680 ha⁻¹) than the seed costs for a nonlegume cover crop (Brennan, unpublished data, 2003–2012) were nearly 10 times the seed costs of using a nonlegume such as rye. Cover crop seed in the region typically accounts for only 20 to 30% of the total cover cropping costs (i.e., labor to plant, irrigate, and terminate, fuel, etc.) in high-value vegetable production systems in California (Klonsky and Tourte, 2011; Tourte et al., 2004, p. 18).

This study provides valuable information on residue quality changes of three cover crops during the winter cover cropping period of 8 yr and N mineralization dynamics during the first 2 yr of a high-value organic systems trial. As the season progressed, there were trends toward increasing C concentrations and C/N ratios and decreasing N concentrations of the cover crop residue. The study provides novel information on the effects of SR on residue quality whereby the C/N ratios of rye in the monoculture and mixture increased with SR, and there was high negative correlation between early-season rye density and N concentration up to January. In contrast, increasing SR in the legume–rye mixtures increased the N concentration of the legume component during December of most years, presumably because the higher SR reduced soil N and increased N₂ fixation. It is unlikely, however, that the relatively small but statistically significant effect of cover crop SR on residue quality would be of practical significance. We conclude that mustard and the legume–rye mixture had higher residue quality than monoculture rye throughout the season. Furthermore the legume component in the legume–rye mixture improved the residue quality of the rye component. These differences suggest that shoot residue from the rye monoculture has the greatest potential to immobilize N when incorporated at season end and may require a longer decomposition period than the residue of mustard and legume–rye before subsequent vegetable planting. Soil mineral N following cover crop incorporation varied considerably between years and appeared to be influenced by spring weather patterns as much as by winter soil management. Additional research is needed to develop management strategies to help growers maximize the benefits of nutrient cycling from incorporated cover crop residue into subsequent crops and reducing the risk of N leaching for cover crops such as legume–cereal mixtures that may contain large amounts of N in their biomass and nonlegumes such as mustard with a relatively low C/N ratio. Nitrogen leaching may be particularly important when shallow-rooted vegetables such as lettuce (Jackson, 1995) follow winter cover crops.

ACKNOWLEDGMENTS

The authors thank (1) Patrick Headley, Cristal Cisneros, Joel Thomas, Adriana Marquez, Jared Burchard, and Jose Rico for laboratory and field assistance; (2) Geraldo Ochoa, David Lara, and Jim Leap for assistance with planting the cover crops; (3) David Lara, Jose Orozco, and Jim Leap for assistance with harvesting and incorporating cover crops; and (4) Bruce Makey for statistical assistance. The first 2.5 yr of this study was partially funded by a grant from the University of California Specialty Crops Research Program. We appreciate the input on the design of the trial from Michael Cahn, Steve Fennimore, Hoard Ferris, and Laura Tourte.

REFERENCES

